

RABAT CONFERENCE ON COASTAL RISKS

(APRIL 23-24, 2019)

ESTIMATION OF HEALTH RISKS DUE TO THE PRESENCE OF POLYCYCLIC AROMATIC HYDROCARBONS IN A COASTAL LAGOON

Luís Nunes Universidade do Algarve Faro, Portugal

So do you STILL think that Risk Assessments are a 'waste of time'?

OBJECTIVE:

Estimate health risk due to the presence of PAH in a coastal lagoon: shellfish farmers

HEALTH RISK ASSESSMENT FRAMEWORK

Social

Benefit-Cost Analysis Eco-Efficiency Analysis Ecosystem Service Valuation Green Accounting Integrated Assessment Modeling Sustainability Impact Assessment

Economic

Chemical Alternatives Assessment Eco-Efficiency Analysis Ecosystem Service Valuation Environmental Footprint Analysis Exposure Assessment Green Chemistry Green Engineering Integrated Assessment Modeling Sustainability Impact Assessment Risk Assessment Life-Cycle Assessment Collaborative Problem-Solving Design Charrettes Environmental Justice Analysis Future Methods Health Impact Assessment Integrated Assessment Modeling Risk Assessment Segmentation Analysis Social Impact Assessment Social Network Analysis Sustainability Impact Assessment

HEALTH RISK ASSESSMENT FRAMEWORK

Health risk assessment:

Environmental levels

ESTIMATE ENVIRONMENTAL CONCENTRATIONS

Use models to complement environmental data

Fugacity approach (Lewis (1901):

Given a concentration in one phase, what will be the concentration in another phase that has been in contact with it long enough to achieve equilibrium?

INHALATION

Mackay, D., 1991. Multimedia environmental models: the fugacity approach. CRC Press, Boca Raton, FL, USA.

-Compartment Environment

The multimedia equilibrium model:

Definition of Fugacity Capacities

Definition of Z (mol/m³ Pa)

1/RT	R = 8.314 Pa m ³ /mol K T = temp. (K)					
1/H or C ^s /P ^s	C ^s = aqueous solubility (mol/m³) P ^s = vapor pressure (Pa) H = Henry's law constant (Pa m³/mo					
Κ _Ρ ρ _S /Η	K_P = partition coeff. (L/kg) ρ_S = density (kg/L)					
K _в ρ _s /Η	K_{B} = bioconcentration factor (L/kg) ρ_{B} = density (kg/L)					
1/P ^s v	v = solute molar volume (m3/mol)					

$C = Z \cdot f$

- C = concentration (mol/m)
- f = fugacity (Pa)
- Z = proportionality constant (*fugacity capacity*) (mol/mPa)

Health risk assessment:

Exposure

EXPOSURE ASSESSMENT

Accidental sediment ingestion

$$ADD_{si} = \frac{C_{s} \cdot IRS \cdot CF_{km} \cdot EF_{dy} \cdot ED}{BW \cdot AT_{c}}$$

ADD _{si}	=	Average	daily dose	from	incidental	soil	ingestion	(mg/[kg⋅c	[]

- Cs Chemical concentration in soil (mg/kg) =
- Incidental soil ingestion rate (mg/d) [child or adult] Conversion factor (10⁻⁶ kg/mg) IRS =
- $\mathsf{CF}_{\mathsf{km}}$ =
- BW Body weight (kg) [child or adult] =
- $\mathsf{EF}_{\mathsf{dy}}$ Exposure frequency (d/yr) [child or adult] =
- Exposure duration (yr) [child or adult] ED =
- Averaging time, carcinogens (d) AT =

Occupational contact with sediment

$$\mathsf{ADD}_{\mathsf{sd}} = \frac{\mathsf{DA}_{\mathsf{soil}} \cdot \mathsf{SA} \cdot \mathsf{EF}_{\mathsf{evd}} \cdot \mathsf{EF}_{\mathsf{dy}} \cdot \mathsf{ED}}{\mathsf{BW} \cdot \mathsf{AT}_{\mathsf{c}}}$$

- ADD_{sd} Absorbed daily dose from contact with soil (mg/[kg·d]) =
- Exposed skin surface area (cm²) SA =

EXPOSURE ASSESSMENT

Occupational contact with water

$$ADD_{wd} = \frac{DA_{water} \cdot SA \cdot EF_{evd} \cdot EF_{dy} \cdot ED}{BW \cdot AT_{c}}$$

$$DA_{water} = 2 \cdot K_{p} \cdot (C_{w} \cdot CF_{cl}) \cdot \sqrt{\frac{6 \cdot \tau \cdot t_{event}}{\pi}}, \text{ for } t_{event} < t^{*}$$

$$DA_{water} = K_{p} \cdot (C_{w} \cdot CF_{cl}) \cdot \left[\frac{t_{event}}{1+B} + 2\tau \cdot \left(\frac{1+3B+3B^{2}}{(1+B)^{2}}\right)\right], \text{ for } t_{event} > t^{*}$$

$$logK_{p}(organics) = -2.72 + 0.71 \cdot logK_{ow} - 0.0061 \cdot MW$$

$$ADD_{wd} = Absorbed daily dose from contact with water (mg/[kg \cdot d])$$

EF_{evd} Event frequency (events/d) =

DAwater Dose absorbed per unit area per water contact event (mg/cm²·event) =

- Contaminant concentration in water (mg/L) Conversion factor (10⁻³ L/cm³) =
- C_w CF_{cl} =
- Duration of exposure event (hr/event) = tevent
- Dermal permeability coefficient (cm/hr) [10⁻³ for inorganics] K =
 - Lag time (hr/event) =

τ

t*

В

- Time to reach steady-state (hr) =
- Relative contribution of permeability coefficients (unitless) =
- K_{ow} *n*-Octanol-water partition coefficient =
- MW Contaminant-specific molecular weight (g/mol) =

EXPOSURE ASSESSMENT

Inhalation of vaporized contaminant

$$ADC_{av} = \frac{C_a \cdot (ET / 24hr / day) \cdot EF \cdot ED}{AT_c}$$

- ADC_{av} = Average daily concentration from inhalation of vaporized contaminant (mg/m³)
- Contaminant concentration in air (mg/m³) C_a =
- Cs Contaminant concentration in soil (mg/kg) =

Ingestion of Fish/Shellfish

 F_{f}

$$ADD_{f} = \frac{C_{f} \cdot IRF_{adj} \cdot F_{f} \cdot CF_{gg} \cdot EF_{dy}}{AT_{c}}$$

- ADD_f Average daily dose from ingestion of local fish (mg/[kg·d]) =
- = Concentration of contaminant in finfish (mg/kg) Cf
 - = Fraction of finfish obtained from site (unitless) = Conversion factor $(k\alpha/10^3 \alpha)$
- CF_{gg} Conversion factor (kg/ 10^3 g)

Health risk assessment:

Characterization

RISK CHARACTERIZATION

Excess Lifetime Cancer Risk (ELCR) due to inhalation of vaporized contaminant

ELCR = ADC_{av} (μ g/m³) x IUR (μ g/m³)⁻¹

IUR = Inhalation unit risk (risk per μ g/m³)

Excess Lifetime Cancer Risk (ELCR) due to the remaining routes of exposure

ELCR = CDI (mg/kg/day) x SF (mg/kg/day)⁻¹

 $CDI = \sum ADD_{i}$

SF = Carcinogenic Slope Factor (mg/kg/day)⁻¹ = 1.5 (mg/kg/d)⁻¹

COASTAL LAGOON (RIA FORMOSA) SOUTH PORTUGAL

System of barrier islands that communicates with the sea through six inlets.

Case-study

Health risk assessment:

Environmental levels

PAH concentration in sediment

PAHs (ng/g ⁻¹ p.h)	Range	m±sd
Naftaleno	0,02 - 0,53	$0,\!35\pm0,\!20$
Acenafteno	0,44 - 13,3	$4,34 \pm 3,48$
Fluoreno	0,18 - 2,44	$0,\!63\pm0,\!52$
Fenantreno	0,14 - 3,17	$0,70 \pm 0,63$
Antraceno	0,04 - 0,83	$0,14 \pm 0,18$
Fluoranteno	0,07 - 9,90	$0,22 \pm 2,06$
Pireno	0,08 - 5,87	$1,00 \pm 1,45$
Benzo[a]antraceno	0,05 - 4,79	0,89 ± 1,25
Criseno	0,04 - 4,19	$0{,}50\pm0{,}87$
Benzo[b]fluoranteno	0,06 - 5,41	$0,84 \pm 1,41$
Benzo[k]fluoranteno	0,01 - 3,2	0,55 ± 0,93
Benzo[a]pireno	0,02 - 6,22	$1,44 \pm 2,12$
Dibenzo[a,h]antraceno	0,01 - 26,5	5,44 ±0,50
Benzo[g,h,i]perileno	0,01 - 4,14	2,08±2,98
Indeno[1,2,3cd]pireno	0,01 - 0,99	$0,43 \pm 0,50$
tPAHs (ng/g ⁻¹ p.s)	1,01-66,3	9,51±14,27

in water

PAHs (µg/L)	m
Naftaleno	<0,008
Acenafteno	<0,010
Acenaftileno	<0,010
Fluoreno	<0,010
Fenantreno	<0,010
Antraceno	<0,001
Fluoranteno	<0,023
Pireno	<0,010
Benzo[a]antraceno	<0,01
Criseno	<0,010
Benzo[b]fluoranteno	<0,011
Benzo[k]fluoranteno	<0,012
Benzo[a]pireno	<0,03
Dibenzo[a,h]antraceno	<0,005
Benzo[g,h,i]perileno	<0,037
Indeno[1,2,3cd]pireno	<0,01

Serra de Monte Figo

PAH concentration in shellfish

PAHs (ng/g ⁻¹ p.h)		Range	m±sd
Naftaleno		0,12-6,97	2,01±2,4
Acenafteno		0,39 - 74,1	19,99± 23,69
Acenaftileno		1,47 – 58,5	19,2 ±22,77
Fluoreno		0,33 – 9,96	$3,\!47 \pm 4,\!44$
Fenantreno		0,24 - 64,6	$10,16 \pm 10,83$
Fluoranteno		3,42 - 110	$17,31 \pm 16,23$
Pireno		3,07-138	$17,49 \pm 22,62$
Benzo[a]antraceno	Ruditapes decussatus	4,21 - 212	$51,\!38\pm51,\!31$
Criseno		2,01 - 159	$35,19 \pm 37,97$
Benzo[b]fluoranteno		2,53 - 104	$16,69 \pm 20$
Benzo[k]fluoranteno		0,23 - 47,5	$11,37 \pm 18,38$
Benzo[a]pireno		0,4 - 122	$25,90 \pm 39,94$
Dibenzo[a,h]antraceno		0,01 - 312	$29,62 \pm 73.32$
Benzo[g,h,i]perileno		0,02 - 161	$10,17 \pm 36,68$
Indeno[1,2,3cd]pireno		0,01 - 49	$2,18 \pm 8,47$
tPAHs	Ruditapes decussatus	30,4 - 1191	$204,92 \pm 216,68$
		49,3 - 911	$260,9 \pm 304,34$
tPAHs Mytilus gall	oprovincialis (ng/g ⁻¹ p.s)	145 - 2291	$648,13 \pm 531$

Lablee Lauli Serra de Monte Figo Ancio FARD Ultio Bia de Annova Bia de Annova

The multimedia equilibrium model:

-Compartment Environment

-Compartment Environment

Information about the media and substance: introduced by the modeller

Compartment	Air	Water	Soil	Sediment
Volume m ³ (V)	6 × 109	7 × 10 ⁶	45000	21000
Z	4 × 10-4	0.1	12.3	24.6
VZ	2.4 $ imes$ 10 6	7 × 10 ⁵	5.5 × 105	5.17 × 105
Reaction half life (h)t	00	693	69.3	6930
Rate constant k = 0.693/t (h-1)	0	0.001	0.01	0.0001
Advective flow G m3/h	107	1000	0	0
D reaction = $VZk = D_{R}$	0	700	5535	51.7
D advection = $GZ = D_A$	4000	100	0	0
$D_R + D_A = D_T$	4000	800	5535	51.7
Total D value = ΣD_T =	10387	Fugacity $f = I/\Sigma D =$	120/10387 :	= 1.15 × 10-2
C = Z f mil/m ³	4.6 × 10-°	1.15 × 10-3	0.14	0.28
m = C V mol				
Percent		Calculated		
C _G g/m ³ , i.e., C _W		Calculateu		
Density ρ kg/m ³				
$C_U \mu g/g$, i.e., $C_G \times 1000/\rho$	0.79	0.23	19	38

The multimedia equilibrium model:

Environmental concentrations (mean error= 0.15%)

PAH	Shellfish µg/g	Sediment µg/g	Water g/m ³	Air g/m ³	Soil g/m ³
Naphthalene	2,00x10 ⁻⁰³	3,56x10 ⁻⁰⁵	1,16x10 ⁻⁰⁶	9,44x10 ⁻¹¹	2,42x10 ⁻⁰⁷
Acenaphthylene	1,92x10 ⁻⁰²	4,92x10 ⁻⁰⁵	2,51x10 ⁻⁰⁶	2,58x10 ⁻¹¹	1,44x10 ⁻⁰⁸
Acenaphtene	2,01x10 ⁻⁰²	1,12x10 ⁻⁰⁴	2,72x10 ⁻⁰⁶	1,49x10 ⁻¹⁰	2,02x10 ⁻⁰⁷
Fluorene	$3,51 \times 10^{-03}$	5,00x10 ⁻⁰⁵	2,59x10 ⁻⁰⁷	2,47x10 ⁻¹¹	$2,54 \times 10^{-08}$
Phenanthrene	$1,04 \times 10^{-02}$	8,75x10 ⁻⁰⁵	4,26x10 ⁻⁰⁷	1,23x10 ⁻⁰⁹	1,81x10 ⁻⁰⁶
Anthracene	1,43x10 ⁻⁰³	1,09x10 ⁻⁰⁶	6,08x10 ⁻⁰⁸	3,49x10 ⁻¹⁴	1,04x10 ⁻⁰⁸
Fluoranthene	1,75x10 ⁻⁰²	2,16x10 ⁻⁰⁵	1,71x10 ⁻⁰⁷	1,86x10 ⁻¹²	8,94x10 ⁻⁰⁸
Pyrene	$1,74 \times 10^{-02}$	2,16x10 ⁻⁰⁵	2,91x10 ⁻⁰⁷	6,47x10 ⁻¹⁴	3,89x10 ⁻⁰⁸
Benzo(a)anthracene	5,10x10 ⁻⁰²	6,29x10 ⁻⁰⁵	1,95x10 ⁻⁰⁷	6,55x10 ⁻¹⁴	2,68x10 ⁻⁰⁸
Chrysene	3,56x10 ⁻⁰²	3,99x10 ⁻⁰⁴	1,36x10 ⁻⁰⁷	5,05x10 ⁻¹⁶	1,12x10 ⁻⁰⁸
Benzo(b)fluoranthene	1,60x10 ⁻⁰²	4,50x10 ⁻⁰⁵	1,44x10 ⁻⁰⁷	1,62x10 ⁻¹⁴	1,91x10 ⁻⁰⁸
Benzo(k)fluoranthene	1,16x10 ⁻⁰²	1,43x10 ⁻⁰⁴	$3,42 \times 10^{-08}$	1,29x10 ⁻¹⁶	$2,48 \times 10^{-10}$
Benzo(a)pyrene	2,67x10 ⁻⁰²	2,93x10 ⁻⁰⁴	7,68x10 ⁻⁰⁸	3,78x10 ⁻²³	7,87x10 ⁻¹³
Dibenzo(a,h)anthracene	2,95x10 ⁻⁰²	4,58x10 ⁻⁰³	6,89x10 ⁻⁰⁷	1,55x10 ⁻¹⁷	$2,72 \times 10^{-10}$
Benzo(g,h,i)perylene	1,01x10 ⁻⁰²	1,25x10 ⁻⁰⁵	2,39x10 ⁻⁰⁸	1,91x10 ⁻¹⁷	$3,42 \times 10^{-10}$
Indene(1,2,3 cd)pyrene	$2,23 \times 10^{-02}$	$2,70 \times 10^{-03}$	5,18x10 ⁻⁰⁹	4,14x10 ⁻¹⁸	7,41x10 ⁻¹²

Health risk estimated for fish farmers

Health risk assessment:

Characterization

		Exposure					
PAH	Air	Water	Shelfish	Sediment	Σ	ELCR	
Naphthalene	7,39x10 ⁻¹¹	8,24x10 ⁻⁰⁸	7,58x10 ⁻⁰⁸	$1,02 \times 10^{-13}$	1,58x10 ⁻⁰⁷	1,58x10 ⁻¹⁰	
Acenaphthylene	2,02x10 ⁻¹¹	-	7,28x10 ⁻⁰⁷	6,09x10 ⁻¹⁵	7,28x10 ⁻⁰⁷	7,28x10 ⁻¹⁰	
Acenaphtene	1,17x10 ⁻¹⁰	-	7,62x10 ⁻⁰⁷	8,54x10 ⁻¹⁴	7,62x10 ⁻⁰⁷	$7,62 \times 10^{-10}$	
Fluorene	1,93x10 ⁻¹¹	-	1,33x10 ⁻⁰⁷	1,07x10 ⁻¹⁴	1,33x10 ⁻⁰⁷	1,33x10 ⁻¹⁰	
Phenanthrene	9,63x10 ⁻¹⁰	9,59x10 ⁻⁰⁸	3,94x10 ⁻⁰⁷	7,65x10 ⁻¹³	4,91x10 ⁻⁰⁷	4,91x10 ⁻¹⁰	
Anthracene	2,73x10 ⁻¹⁴	-	$5,42 \times 10^{-08}$	4,40x10 ⁻¹⁵	$5,42 \times 10^{-08}$	$5,42 \times 10^{-09}$	
Fluoranthene	1,46x10 ⁻¹²	6,08x10 ⁻⁰⁸	6,64x10 ⁻⁰⁷	3,78x10 ⁻¹⁴	7,24x10 ⁻⁰⁷	$7,24 \times 10^{-10}$	
Pyrene	5,06x10 ⁻¹⁴	-	6,60x10 ⁻⁰⁷	1,64x10 ⁻¹⁴	6,60x10 ⁻⁰⁷	6,60x10 ⁻¹⁰	
Benzo(a)anthracene	5,13x10 ⁻¹⁴	1,50x10 ⁻⁰⁷	$1,93 \times 10^{-06}$	1,13x10 ⁻¹⁴	2,08x10 ⁻⁰⁶	$2,08 \times 10^{-07}$	
Chrysene	3,95x10 ⁻¹⁶	1,05x10 ⁻⁰⁷	1,35x10 ⁻⁰⁶	4,74x10 ⁻¹⁵	$1,45 \times 10^{-06}$	$1,45 \times 10^{-08}$	
Benzo(b)fluoranthene	1,27x10 ⁻¹⁴	1,11x10 ⁻⁰⁷	4,47x10 ⁻⁰⁷	8,08x10 ⁻¹⁵	5,58x10 ⁻⁰⁷	5,58x10 ⁻⁰⁸	
Benzo(k)fluoranthene	1,01x10 ⁻¹⁹	2,63x10 ⁻⁰⁸	4.40×10^{-07}	1,05x10 ⁻¹⁶	4,66x10 ⁻⁰⁷	4.66×10^{-08}	
Benzo(a)pyrene	2,96x10 ⁻²³	9,10x10 ⁻⁰⁸	1,01x10 ⁻⁰⁶	3,33x10 ⁻¹⁹	$1,10 \times 10^{-06}$	$1,10 \times 10^{-06}$	
Dibenzo(a,h)anthracene	1,21x10 ⁻¹⁷	$1,92 \times 10^{-06}$	1,12x10 ⁻⁰⁶	1,15x10 ⁻¹⁶	$3,04 \times 10^{-06}$	$3,04 \times 10^{-06}$	
Benzo(g,h,i)perylene	1,50x10 ⁻¹⁷	-	3,83x10 ⁻⁰⁷	1,45x10 ⁻¹⁶	3,83x10 ⁻⁰⁷	3,83x10 ⁻⁰⁹	
Indene(1,2,3 cd)pyrene	3,24x10 ⁻¹⁸	9,51x10 ⁻⁰⁹	8,45x10 ⁻⁰⁷	3,13x10 ⁻¹⁸	8,55x10 ⁻⁰⁷	8,55x10 ⁻⁰⁸	

Manto Reta

TAVIRA

llha de Tavira

Louk

Serra de Monte Figo

moso.

liha da Annona

Lisboa

Vila Real

Supal Bargar

Table 3: Willingness to pay for a 1 in 1,000,000 risk reduction, by health threat (two scenarios, income = \$42,000) ^a									
	Profile		Sudden Death Nov	v	10 year latency; sick 5 years, then death				
Health Threat			-			_			
	Age now	30	45	60	30	45	60		
Breast Cancer		7.87 (4.65, 11.34)	8.39 (5.89, 11.25)	6.98 (4.56, 9.57)	8.66 (6.6, 11.04)	6.64 (4.08, 8.35)	4.44 (2.93, 6.03)		
Prostate Cancer		7.38 (4.22, 10.74)	7.78 (5.29, 10.58)	6.4 (3.82, 9.08)	7.25 (5.26, 9.42)	5.65 (4.1, 7.44)	4.05 (2.62, 5.69)		
Colon Cancer		4.46 (1.76, 7.32)	4.88 (3.09, 6.91)	3.47 (1.72, 5.35)	6.32 (4.67, 8.15)	4.76 (3.6, 6.03)	3.09 (2.03, 4.26)		
Lung Cancer		.95 (-2.3, 3.14)	0.97 (-1.05, 2.74)	0.22 (-2.49, 1.29)	2.36 (0.8, 3.99)	0.78 (-0.53, 1.92)	0.04 (-2.34, .3)		
* smoker		10.59 (7.18, 14.26)	11.05 (8.32, 14.21)	9.62 (7, 12.79)	12.43 (9.75, 15.7)	10.93 (8.58, 13.59)	9.24 (7.22, 11.86)		

Amount a population would be **willing to pay to save one statistical life** in a year =

 $=WTP \cdot ELCR \cdot res$

e.g., 8.66 (\$/pm/res) · 1.1 (pm) · 600 (res) = 5 700 \$/year

Or for the total population, = M€ 1.25/year

Cameron, T. A., DeShazo, J. R., & Johnson, E. H. (2008). Willingness to pay for health risk reductions:Differences by type of illness. Department of Economics, University of Oregon.

Serra de Monte Figo

Thank you!!